
Whitepaper: Race Catcher™ Thinking Software Inc. Page 1http://www.ThinkingSoftware.com

Email: contact@ThinkingSoftware.com

 Whitepaper Introducing Race Catcher™

The worst bugs are those which we do not
know we have - those that do not generate
exceptions, logs or crash your system, but
are the silent and intermittent conditions
of unpredictable results.
They are often impossible to be reproduced in a debugging
environment, and even if reproduced, they are not detectable
using traditional testing techniques. They live within your
code like time bombs. Except when they explode, they are not
disarmed but wait for the next time to do damage again
and again.

Race Catcher™
US and International Patents Issued and Pending.

Automatically Pinpoints Concurrency Defects
in Multi-threaded JVM Applications with 0% False Positives.

Ben
Typewritten Text

Ben
Typewritten Text
List of JVM Languages: http://en.wikipedia.org/wiki/List_of_JVM_languages Following Java, JRuby and Jython are the most popular presently. The list of 28 languages presently has 50+ JVM-powered implementations. Race Catcher™ performs dynamic analysis of the bytecode. It supports all of the JVM-powered languages.

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text
,

Whitepaper: Race Catcher™ Thinking Software Inc. Page 2http://www.ThinkingSoftware.com

SRace Catcher™

Reliability of your business critical soft-
ware is absolutely essential to the suc-
cess of your business and must never be
compromised.

CPU silicon transistor density has reached
its peak. However, processing speeds are
continually increasing. Those advances in
computing speeds are due, not to increas-
ing silicon density, but the advent of Multi-
core CPU technologies.

In order to cope with the proliferation of
multi-core machines and leverage that
technology to remain ahead of the com-
petition, software developers must design
new applications using multi-threading
techniques.

The challenge of, and the need for creat-
ing multi-threaded applications will only
increase with time. This trend will create a
higher prevalence of concurrency defects,
which can easily slip through traditional
testing techniques.

As a consequence of multi-threading, a
new non-trivial type of error conditions
called thread contentions, consisting of
race conditions and deadlocks, has come to
the forefront. Dealing with these condi-
tions is becoming increasingly important.

Overview:

» Thinking Software, Inc. offers the Race Catcher™, which when
combined with your JVM environment, provides superior
advantages, making it the perfect companion for your multi-
threaded JVM-powered applications.

Even after many years
of testingΣ applications often host ŀ
large ƴǳƳōŜǊ ƻŦ ǊŀŎŜ conditions.

 after years of testing

 Race Catcher™ pinpoints experienced race conditions with 100%
accuracy and 0% false positive rate.

NIST estimates that over two
days of developer’s time (17.4
hours [1]) is spent fixing an
average bug, but a race condition
is not your average bug.

Microsoft published a study
where race conditions took from
days to month's to diagnose, and
where 30% of manual fixes were
incorrect.

[1] Source: National Institute of Standards and Technology - The Economic Impacts of Inadequate Infrastructure for Software Testing
http://www.nist.gov/director/planning/upload/report02-3.pdf

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Whitepaper: Race Catcher™ Thinking Software Inc. Page 3http://www.ThinkingSoftware.com

SRace Catcher™

About Thinking Software:
Thinking Software, Inc. has developed the Software Understanding Machine® (SUM)
- a technology that delivers to the software industry higher reliability processing and offers
a dramatic reduction in expenses for software testing, debugging and maintenance.

For more information, visit www.ThinkingSoftware.com

Email: contact@ThinkingSoftware.com

Three Postulates of the
Software Understanding Machine® (SUM)

Error free software does not exist: the only proof of
software correctness is through testing.

Exhaustive testing is not feasible: future inputs can
be tested only in the future.

The only way to get truly close to error free software
is through constant run-time analysis of software
applications using a sophisticated Dynamic Code
Analyzer — the kind of analyzer implemented in the
Software Understanding Machine® (SUM).

Postulate One:

Postulate Two:

Postulate Three:

Ben
Typewritten Text

Whitepaper: Race Catcher™ Thinking Software Inc. Page 4http://www.ThinkingSoftware.com

SRace Catcher™

Race Conditions & Deadlocks
The potential for race conditions can be eliminated if all the
methods within an application are synchronized. However, all of
the benefits of multiprocessing then disappear.

By synchronizing, we reduce the risk of race conditions but increase the risk of deadlocks.

[1] Source: wikipedia entry on “Deadlocks” - The full aricle can be read here: http://en.wikipedia.org/wiki/Deadlock

Race Catcher™ will notify you of a
deadlock at the time the deadlock
occurs.

Race Catcher™ will pinpoint the code
causing the deadlock

» Race Conditions:
A race condition occurs when two or more threads have unordered access to
a shared memory location and at least one access is for “Write”.

An access for “Write” is when a thread modifies the value of a memory location.
An access for "Read" is when a thread simply obtains the value of the memory
location.

» Deadlocks:
Deadlock refers to a specific condition when two or more processes are waiting
for each other to release a resource, or more than two processes are waiting for
resources in a circular chain.

Deadlock is a common problem in multiprocessing where many processes share
a specific type of mutually exclusive resource known as a software, or soft
lock[1]

» Unlike the option provided by the JVM:
A deadlock is a condition that is not silently passing (like a race condition) –
when you see your application not progressing, you can use the combination
of keys <Ctrl> + <Break> (in Windows OS) or <Ctrl> + <\> (In Linux OS) to see the state of
all the JVM threads.

However, this requires one to constantly watch the screen. Race Catcher™ will notify you of a
deadlock at the time the deadlock occurs. Additionally, and unlike the JVM option, Race
Catcher™ will analyze the code causing the deadlock, as opposed to simply listing all the
threads being in a state of wait, when threads are in that state often as a consequence of the
other threads state.

Whitepaper: Race Catcher™ Thinking Software Inc. Page 5http://www.ThinkingSoftware.com

SRace Catcher™

False positive analysis results harm productivity. False positives reduce
trust in the tool.

Some static analysis tools claim 20% false positives while analyzing race conditions. However
during the testing of these tools by our team, some of them really produced 77% false positives.
Even the best known dynamic analysis tools claim results to be 15% - 20% false positives.

Race Catcher™ dynamic analysis provides 0% false positives results, and does
not miss any of the race conditions experienced by the application.

» The Dangers of False Positives

» Race Conditions - Analyzing Collective Experience
Race Catcher™ allows analysis of the collective experiences of multiple machines
running the same application.

ARM-CM stands for Application Reliability Management via Collaborating Machines.

Since race conditions are intermittent conditions of unpredictable results, and since applications
with race conditions are running in a “happy” mode (not crashing, generating exceptions or error
logs), analyzing the collective experience of applications running in “ARM-CM Enabled mode” is very
crucial.

Race Catcher™ agents can be installed on the machines in the field. Race condition and dead lock
analysis results can be communicated to the machine running the Race Catcher™ UI and made
available to the tech support engineers or QA depart-ment of the application software vendor.

The fixed version can then be pushed back to the field machines, even before most of them ever
experience the fault. In this configuration, the machines in the field act as QA machines.

» Collective Analysis with Race Catcher™:

Whitepaper: Race Catcher™ Thinking Software Inc. Page 6http://www.ThinkingSoftware.com

SRace Catcher™

Principles of Race Catcher™

» “All Automatic” philosophy of SUM
Race Catcher™ is designed to operate automatically. This is required for consistently
accurate results, wide adoption and the absence of the learning curve.

» No source code access requirement
Since Race Catcher™’s complete analysis is done on the bytecode, it does not need
the source code to be provided by the user in order to operate. This kind of auto-
mation is necessary for two reasons:

• The likelihood of human error, when pointing to a wrong source code

• The time and effort required to locate and link the automatically generated
project to the original source code.

» No requirements for special environment or integration In
order to be completely automatic, a tool must not require any kind of inte-gration
with a specific Interactive Development Environment (IDE). Race Catcher™ is
neutral to the environment used to build the application, provided the application is
executed by the JVM.

» Why Race Catcher™ is an addition to the JVM The only one
requirement for using Race Catcher™ is that the application executes bytecode.

» Multithreading Contentions are generally not permitted
(with the rare exception when Race Conditions are encoded intentionally.)
In such rare cases, the reporting of the thread contentions is expected.

The term “false positive” - in the
case of program analysis an error is
reported where no error exists - and
in the term “false negative” - in the

case of program analysis, an error
is missed - were first introduced

in statistical analysis in the 19th
century.

Think of a doctor giving an errant
- false positive -diagnosis of some
condition to a patient where the
condition, in fact, does not exist

- and what it does to the patient -
and what it does to the doctor’s - in

this case tool’s - reputation).

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Ben
Typewritten Text

Whitepaper: Race Catcher™ Thinking Software Inc. Page 7http://www.ThinkingSoftware.com

SRace Catcher™

The Case for Dynamic Code Analysis
Known today dynamic analysis tools, such as Profilers, Bounds Checkers
and APM (Application Performance Management) tools are relatively
simple in nature, unlike a dynamic code analyzer like Race Catcher™.

Examples of static code analyzers are: compilers, Javadoc, and other tools that
analyze source code in order to convert it into something else such as an ex-
ecutable or documentation.

A sufficiently complex functionality, like diagnosing of Race Conditions, requires
more complex implementation.

If a primary static analysis tool is to consider all possible permutations of a
process execution, the number of permutations that must be considered would
be very large.

Analyzing race conditions statically is defined to be a NP-Hard problem.

» Static Analysis tools
Analyzing race conditions

statically is defined to be a
NP-Hard problem.

“NP-hard (non-deterministic polynomial-time hard), in computa-
tional complexity theory, is a class of problems that are, informally,

at least as hard as the hardest problems in NP” [1]

 “While a method for computing
the solutions to NP-complete prob-

lems using a reasonable amount
of time remains undiscovered,

computer scientists and program-
mers still frequently encounter

NP-complete problems. An expert
programmer should be able to rec-

ognize an NP-complete problem so
that he or she does not unknowingly
spend time trying to solve a problem

which so far has eluded genera-
tions of computer scientists. Instead,

NP-complete problems are often
addressed by using approximation

algorithms.” [2]

“In computer science and operations
research, approximation algo-

rithms are algorithms used to find
approximate solutions to optimi-
zation problems. Approximation

algorithms are often associated with
NP-hard problems; since it is un-

likely that there can ever be efficient
polynomial time exact algorithms

solving NP-hard problems, one
settles for polynomial time sub-

optimal solutions. Unlike heuristics,
which usually only find reasonably
good solutions reasonably fast, one

wants provable solution quality and
provable run time bounds. Ideally,
the approximation is optimal up to
a small constant factor (for instance

within 5% of the optimal solu-
tion).” [3]

» To analyze Race Conditions,
statically approximation algorithms are used
Even when using approximation algorithms, a large portion of such analysis will
inevitably be “false positive”, i.e., a significant percentage of these permutations will
never be encountered during the code execution.

Additionally, due to the approximation used, the results will contain “false nega-
tives”, i.e., some of race conditions that will be experienced in practice will not
be diagnosed.

» Race Catcher™ is not a Static Analysis tool,
it does not use approximation.
Race Catcher™ will not cause any “false positive” analysis while examining actual
experienced race conditions. And, it will not miss any of the experienced race
conditions either, so there will be no “false negatives”. In both cases, it can be trusted
to perform as designed without any approximation, and deterministically.

[1] Source: http://en.wikipedia.org/wiki/NP-hard
[2] Source: http://en.wikipedia.org/wiki/NP-complete
[3] Source: http://en.wikipedia.org/wiki/Approximation_algorithm

Whitepaper: Race Catcher™ Thinking Software Inc. Page 8http://www.ThinkingSoftware.com

SRace Catcher™

Conclusion
Multi-core hardware increasingly affects the need for multi-
threaded application development, which in turn affects the
complexity of software. The challenge of, and the need for
creating multi-threaded applications will only increase with time.

provides a tool with very specific advantages. The main advantage is in the
ability to treat this tool as an addition to your JVM.

Thinking Software Inc.

Race Catcher™ catches all manifested Race
Conditions & diagnoses all manifested Deadlocks.

This trend creates an increasingly prevalent class of software defects, namely thread contentions or con-
currency defects that can easily slip the traditional testing techniques resulting in new application
reliability issues.

These reliability defects are specially hard to deal with due to the intermittent nature of the conditions
that trigger them. This means that, often, they are not present during the traditional testing phase.

The conditions described above are – deadlock – a state of indefinite wait, and - race condition – a con-
dition of unpredictable results, present when multiple threads are accessing the same memory location
in undetermined order, while at least one of these threads is changing the memory location’s content.

Race Catcher™ is a perfect companion to multi-threaded JVM applications.

Other Static Analy-
sis Tools

Other Dynamic
Analysis Tools

Race Catcher™

Requires IDE Integration: YES YES NO
Source Code Required: YES YES NO

False Positive Rate %: 20% + 14% + 0%
Requires Domain Experience: YES YES NO

UI opens Black Boxes: YES

Functional Comparison
to other technologies:

» Opens the “black box” of code going through JVM.

» Requires no integration with development environments, alteration or
recompilation of existing code – the only requirement is that the
application executes bytecode.

» Automatically catches all manifested (experienced) race conditions &
diagnoses all manifested deadlocks with 0% false positive precision.

Whitepaper: Race Catcher™ Thinking Software Inc. Page 9http://www.ThinkingSoftware.com

SRace Catcher™

Thinking Software, Inc. – has developed the Software Understanding Machine® (SUM)
- a technology that delivers to the software industry higher reliability processing and offers
a dramatic reduction in expenses for software testing, debugging and maintenance.

About Thinking Software:

For more information, visit www.ThinkingSoftware.com

Email: contact@ThinkingSoftware.com

Three Postulates of the
Software Understanding Machine® (SUM)

Error free software does not exist: the only proof of
software correctness is through testing.

Exhaustive testing is not feasible: future inputs can
be tested only in the future.

The only way to get truly close to error free software
is through constant run-time analysis of software
applications using a sophisticated Dynamic Code
Analyzer — the kind of analyzer implemented in the
Software Understanding Machine® (SUM).

Postulate One:

Postulate Two:

Postulate Three:

	Untitled
	Untitled
	Untitled

