
Thinking Software, Inc. www.thinkingsoftware.com contact@ThinkingSoftware.com

What is Race Catcher?

Modern multi-threaded applications are subject

to concurrency faults that cause software

systems to fail and inflict downtime, financial

losses, customer dissatisfaction, dirty data, and

a myriad of other negative consequences. The

root cause of such failures are race conditions

and deadlocks.

Thinking Software’s Race Catcher solution is

powered by a dynamic code analyzer that

analyzes dependencies within an application’s

code as it executes. Our algorithm detects and

locates every concurrency fault experienced by

the application as it runs, regardless of whether

it’s installed in development, test or production.

With Race Catcher, you may be assured that

any race condition or deadlock that occurs in

your application is trapped, no matter how

silent or obvious its symptoms are; its nature

and location are instantly relayed to the

engineering team for review and correction.

Thus, the debugging process is redefined.

Of course, Race Catcher works seamlessly in

your development and test environments. But

its low overhead also means you can safely

deploy your Race Catcher-enabled applications

to production. Your users can become your

testers! Any concurrency fault experienced by

any application instance in your global installed

base is trapped, mapped and analyzed in real

time.

Race Catcher™

DATASHEET

By Thinking Software, Inc.

Race Catcher™ from Thinking Software detects and

diagnoses runtime errors experienced in code

executed by the JVM. Each fault is dynamically

analyzed at the byte-code level, and its location is

mapped to the source code. This allows you to find

and mitigate complex, insidious errors, boosting

your application’s reliability.

 AT A GLANCE

 BENEFITS

 Automated location of multi-threading

problems

 Perpetual increase in application reliability

 Substantial reduction of application failures

 Application reliability assurance

 0% False Positive diagnoses

 Drastic reduction of debugging costs

 Runtime code analysis

CONCURRENCY BUGS – FACTS AND

EXAMPLES

 “Any sufficiently complex multi-threading

application is riddled with race conditions.”

 “Over 70% of concurrency bugs take days-

months to diagnose.” –MSFT Research

 Facebook’s IPO flop occurred due to a race

condition in Nasdaq software.

 The 2003 Northeast blackout was caused by

a race condition and cost General Electric

$6B.

 Therac-25 fatally overdosed cancer patients

with radiation due to a race condition.

